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Abstract Time decay of the fluorescence anisotropy
ratio due to diffusion of dyes in micelles is usually inter-
preted by decoupling the reorientational dynamics of
the molecule with respect to the local director from the
translational diffusion of the dye. However, while such a
kind of assumption is justified in other contexts (like for
reorientations of a small mobile fragment in a macro-
molecule, decoupled from the motion of the macromol-
ecule as a whole, as invoked in the well-known model
by Lipari and Szabo), here it is not based on physical
grounds. In this work we develop the stochastic model
for the full description of the roto-translational dynam-
ics of a dye in the micellar environment, by employ-
ing the Fokker–Planck–Smoluchowski equation for the
positional and orientational variables. Then we simplify
the model to the situation of strong confinement of the
molecule at the micelle interface. Finally, by employ-
ing a time-scale separation between fast reorientational
dynamics and slow lateral diffusion of the dye (which
holds if the micelle radius is much larger than the size of
the dye), and by resorting to a model like the “wobbling
in a cone”, we show that a bi-exponential form can be
obtained for the fluorescence anisotropy ratio, but with
the remarkable difference that the fast-relaxing compo-
nent is not affected by the slow motion.
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1 Introduction

Time-dependent fluorescence depolarization of dyes
confined to the interface of micelles are usually inter-
preted by assuming independent contributions of the
librational motion with respect to a local director, and
of the dye translational diffusion at the interface [1–4].
This allows the factorization of the transition dipole cor-
relation function into a slow component, due to reori-
entations driven by the dye diffusion at the interface,
and a fast component, associated to the dye librational
motion. If a simplified model like the wobbling in cone
[5,6] is employed for the latter process, then the fluo-
rescence depolarization is described according to three
independent parameters: (1) the correlation time for the
interface diffusion of the dye, (2) the correlation time
for the librational motion, and (3) the order parame-
ter describing the degree of alignment of the dye with
respect to the local director. Often, the overall rotational
tumbling of the micelle is also taken into account, even
if its contribution is negligible [1,3]. In practice the time
dependence of the fluorescence anisotropy is fitted by
the sum of two exponential decays and, from the cor-
responding time-constants and relative intensities, the
three independent parameters of the model are evalu-
ated [1–4].

To justify such a procedure, the “model-free”
approach of Lipari and Szabo [7] is invoked. Such a
model was elaborated for the analysis of the rotational
relaxation in macromolecules when a small mobile frag-
ment is observed. In this case, the assumption of inde-
pendent contributions for the overall macromolecule
rotations and the relative motion of the small frag-
ment is well justified, as long as the motion of the frag-
ment does not perturb significantly the dynamics of the
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overall macromolecule. In our opinion such a hypothesis
cannot be taken for granted in the case of dyes in
micelles, since the two independent motions cannot be
assigned to bodies of different size. Furthermore, the
separation of motions is not imposed by the need of
simplifying the analysis of a very complex dynamical
problem like macromolecular systems with a large num-
ber of internal degrees of freedom. As a matter of fact,
the coupled translational and rotational motions of a
rigid dye molecule are the only required ingredients
for the analysis of the fluorescence anisotropy, and they
can be treated according to standard stochastic meth-
ods based on the Fokker–Planck equation [8], or the
Fokker–Planck–Smoluchowski equation for the over-
damped regime. The complexity of the problem arises
from the need of taking into account the dynamical
effects of the ordered environment provided by
micelles. These can be conveniently modelled by includ-
ing in the evolution operator a suitable mean-field poten-
tial acting on both the translational and orientational
degrees of freedom of the dye. In conclusion, the
Fokker–Planck–Smoluchowski equation for the coupled
translational and rotational motions of a rigid molecule
with a proper mean-field potential can provide a self
consistent description of dye fluorescence anisotropy in
micelles. This, however, requires suitable procedures for
the analysis of stochastic models in the presence of a
mean-field potential.

In the past, the Theoretical Chemistry Group of
Padua University, starting from the classical contribu-
tions by Nordio and coworkers on the rotational diffu-
sion in nematic liquid crystals [9–11], has developed
theoretical and computational methods for the analysis
of Fokker–Planck equations of different kinds arising
in several fields of Physical Chemistry. To summarize
our past work, we would like to recall the analysis of
(1) molecular models of the roto-translational dynam-
ics in liquid crystals of nematic, smectic and cholesteric
type [12–15]; (2) the conformational dynamics of flexible
molecules [16–27]; (3) activated rate processes [28–36];
(4) electron transfer processes [37–44]; (5) cage effects
in molecular fluids [45–51]; (6) effects of director fluctu-
ations on spectroscopic observables [52–56]. Moreover,
these applications required the development of compu-
tational algorithms [57–60]. In all the cases the basic
formalism is provided by Fokker–Planck equations for
the stochastic variables specific for a given problem, with
a suitable potential reproducing the ordering due to en-
vironment or the internal coordinates.

In the present work, these theoretical methods will be
applied to develop a molecular model for dye dynamics
in micelles of spherical shape. In the next section we
introduce the Fokker–Planck–Smoluchowski equation

for the complete description of the rotational and trans-
lational dynamics of a rigid molecule in the micellar
environment. A simplified model is derived in the third
section by projecting out the radial dependence under
the assumption of strong confinement at the interface of
the micelle. In the fourth section we analyse when the
roto-translational decoupling holds in order to make
contact with the standard procedure of fitting the flu-
orescence depolarization [1–4]. We have also included
some appendices with the specific mathematical tools
employed in the analysis.

2 Roto-translational diffusion in micelles

Let us first describe the main reference systems
employed in the modelling (see Fig. 1 for a geomet-
ric schematization). We introduce a Laboratory Frame,
LF ≡ (xL, yL, zL), whose origin is placed at the cen-
tre of the micelle, while the axes’ orientation can be
arbitrarily chosen due to the spherical symmetry of the
system; then we consider a Molecular Frame, MF ≡
(xM, yM, zM), tethered to the probe-molecule. With ref-
erence to LF, the stochastic variables for the roto-trans-
lational dynamics of the probe are denoted by the
collective array Q = (r, �LM), where r = (rx, ry, rz)

are the coordinates of the molecular centre in the LF,
and �LM = (αLM, βLM, γLM) is the set of Euler angles
which specifies the molecular orientation through the
transformation LF→MF encoded according to Rose’s
convention [62].

By considering the roto-translational motions as a sta-
tionary stochastic process, all information about dynam-
ics (and equilibrium properties as well) are contained in
the non-equilibrium probability density p(Q, t) normal-
ized as

∫
dQ p(Q, t) = 1, where dQ = drd�LM with

d�LM = dαLM dβLM sin βLM dγLM. The stationary limit
limt→∞ p(Q, t) = peq(Q) determines the equilibrium
distribution which can be specified as the Maxwell–
Boltzmann distribution for a given mean-field potential
V(Q):

peq(Q) = e−V(Q)/kBT
∫

dQe−V(Q)/kBT
(1)

By modelling the roto-translational dynamics as a
diffusive process, the evolution of the non-equilibrium
probability density is described by the Fokker–Planck–
Smoluchowski equation [8]

∂

∂t
p(Q, t) = −�(Q)p(Q, t) (2)
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Fig. 1 Schematic representation of a spherical micelle, and ref-
erence systems employed in the analysis: the Laboratory Frame
LF ≡ (xL, yL, zL), the Director Frame DF ≡ (xD, yD, zD) speci-
fied at the location of the dye, and the Molecular Frame MF ≡
(xM, yM, zM) tethered to the dye

where �(Q) is the evolution operator, acting on vari-
ables Q, given by

�(Q) = ∇†(Q)D(Q)peq(Q)∇(Q)peq(Q)−1 (3)

with D(Q) the 6× 6 roto-translational diffusion matrix,
and ∇(Q) the gradient operator built as

∇(Q) =
( ∇T(r)

∇R(�LM)

)

(4)

where ∇T(r) and ∇R(�LM) are, respectively, its posi-
tional-gradient and orientational-gradient components

∇T(r) ≡ ∂

∂r
, ∇R(�LM) ≡ML(�LM) (5)

The operator ML(�LM) is the generator of infinitesi-
mal rotations (applied to functions of �LM) with Carte-
sian components referred to the Laboratory Frame; its
form, involving derivatives with respect to the Euler
angles, is specified in the Appendix A. Finally, the sym-
bol “†” in Eq. (3) denotes the adjoint-operator, intro-
duced in the context of the scalar product defined as
〈f (Q) | g(Q)〉 ≡ ∫

dQ f (Q)∗g(Q) for generic pairs of
functions f and g, by means of 〈f (Q) | O(Q)g(Q)〉 ≡
〈(O(Q)†f (Q)) | g(Q)〉 for a generic operator O(Q); with
reference to gradient operators, integration by parts
yields the general rule ∇(Q)† ≡ −∇(Q)Tr with “Tr”
denoting the transposed array.

The knowledge of p(Q, t) allows one to evaluate
(time-dependent) averages of generic observables, i.e.,
f (t) = ∫

dQ p(Q, t)f (Q) for functions f (Q) probing the

actual state of the stochastic variables. Moreover one can
calculate time-correlation functions between generic
pairs of abservables f (Q) and g(Q) evaluated at two
times t1 and t2; for a stationary process, the correlation
functions depend only on the time-separation t = t2− t1,
and can be casted in the form

f (Q)∗t g(Q)0 =
∫

dQ f (Q)∗e−�(Q)tpeq(Q)g(Q) (6)

In particular, in the context of this work we are inter-
ested in evaluating the anisotropy ratio of the fluores-
cence emission for dye-probes, which is expressed as
[1–4].

r(t) = I‖(t)− I⊥(t)
I‖(t)+ 2I⊥(t)

(7)

where I‖(t) and I⊥(t) are the intensities of the emission
detected on planes parallel and perpendicular to the
polarization plane. On assuming that both the absorp-
tion- and emission- dipole transition moments are collin-
ear to the molecular axis individuated by the unit vector
µ ≡ zM, then Eq. (7) becomes

r(t)= 2
5

P2(µ(t) · µ(0))= 2
5

∑

m

D2
m,0(�LM)∗t D2

m,0(�LM)0

(8)

where P2(·) denotes the second-rank Legendre polyno-
mial, and D2

m,0(�LM) are second-rank rotational
Wigner functions [62]. From Eq. (8) one gets imme-
diately that the initial-time value is r(0) = 2/5 and,
since the diffusion occurs in a spherically symmetric
environment where all orientations are equally sampled
at equilibrium, the long-time limit is limt→∞ r(t) = 0. In
summary, the general problem requires the evaluation
of the characteristic correlation functions entering the
sum Eq. (8) by employing the integral form Eq. (6).

The structure of Eq. (3) is here simplified by consid-
ering the model-case of uniaxial probe molecules (for
which there are no roto-translational coupling blocks
in the diffusion matrix), and assuming isotropic trans-
lational diffusion in the local viscous environment with
unique coefficient DT. Thus, in our model we shall deal
with

D(Q) =
(

DT1 0
0 DR

L (Q)

)

(9)

where 1 denotes the 3× 3 identity matrix and DR
L is the

rotational diffusion tensor expressed with reference to
the LF axes. Such a tensor depends only on the molecu-
lar orientation �LM through

DR
L (�LM) = E(LF←MF)DR

ME(LF←MF)Tr (10)
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where E(LF ← MF) is the Euler matrix [62] for the
transformation of vector’s coordinates under rotation
of the reference axes from MF to LF, and DR

M is the
tensor expressed in the Molecular Frame. For probes of
uniaxial symmetry about zM, DR

M takes the form

DR
M =

⎛

⎝
DR⊥ 0 0
0 DR⊥ 0
0 0 DR‖

⎞

⎠ (11)

where ‖ refers to the spinning about the symmetry axis,
while ⊥ refers to the tumbling motions of the molecule
about transverse axes.

According to Eq. (9), the evolution operator Eq. (3)
reduces to

�(Q) = �T(r)+ �R(�LM) (12)

where �T(r) is the component related to translational
diffusion (“T”) of the molecular centre, while �R(�LM)

refers to the reorientational motions (“R”) with respect
to the Laboratory Frame, and they are explicitly given
by

�T(r) = DT∇T(r)†peq(Q)∇T(r)peq(Q)−1 (13)

�R(�LM) = ∇R(�LM)†peq(Q)DR
L (�LM)

×∇R(�LM)peq(Q)−1 (14)

We stress here a fundamental point which emerges from
the structure of Eqs. (13) and (14): the two operators
(and hence the corresponding dynamical processes) are
coupled by the equilibrium distribution which depends
on both the positional and orientational variables. In
other words, the orientational-positional coupling in the
mean-field potential (statics) induces a roto-translational
coupling (dynamics) so to prevent, in principle, the sep-
aration between the two kinds of motions.

The dynamical effects of the orientational-positional
coupling can be highlighted by applying a suitable
change of reference system, as illustrated in the fol-
lowing. Let us consider the spherical coordinates which
identify the actual location of the probe-molecule, r ≡
(r, θ , φ), and introduce a new frame, the Director Frame
DF ≡ (xD, yD, zD), identified by the transformation
LF → DF specified by the set of Euler angles �LD =
(φ, θ , 0). In particular, the longitudinal axis of DF points
along the actual radial direction, which is taken as the
local director of molecular alignment experienced by
the probe-molecule in the micelle: zD = r/r. The molec-
ular orientation referred to DF is denoted as �DM =
(αDM, βDM, γDM). By specifying the molecular orienta-
tion with respect to DF, the state of the molecule is
fully specified by the new set of stochastic variables
Q′ = (r, θ , φ, �DM). The relations between the three
systems of axes up to now introduced are summarized

by the following scheme:

LF MF

DF

�
�

�
�

�
���

�
�

�
�

��
�

�LD �DM

�LM

, �LD = (φ, θ , 0)

(15)

At given distance r from the centre, the orientational
equilibrium distribution with respect to the DF is invari-
ant under migration of the dye across the micelle,
because of the spherical symmetry of the system. Thus,
peq(Q′) depends explicitly only on r and �DM, and in
terms of mean-field potential one has that V(Q′) ≡
V(r, �DM). A parametric form of such a function can be
obtained as expansion on the basis of Wigner functions,

V(r, �DM) =
∑

j≥0

v(j)(r)Dj
0,0(�DM) (16)

where for uniaxial molecules embedded in a locally
uniaxial mean-field environment only Wigner functions
with null values of both the projection indices have to be
accounted. At the lowest level of detail, a model form
for the mean-field potential is

V(r, �DM) = v(0)(r)+ v(1)(r)D1
0,0(�DM)

= v(0)(r)+ v(1)(r) cos βDM (17)

where v(0)(r) is an orientation-independent contribution
which sets the intrinsic modulation of the molecular con-
finement on moving along the radial direction, while the
other contribution introduces a polar alignment of the
molecule with respect to the local director, weighted by
the position-dependent coefficient v(1)(r).

We shall focus now on the global transformation of
the time evolution operator according to the employed
change of variables Q → Q′. In the Appendix B we
demonstrate that the positional-and orientational- gra-
dient operators transform to

∇T(Q′) = STT(r, θ , φ)Tr

⎛

⎝
∂/∂r
∂/∂φ

∂/∂θ

⎞

⎠

+SRT(r, θ , φ)TrMD(�DM) (18)

∇R(Q′) = E(LF← DF)MD(�DM) (19)

with the transposed of matrices STT and SRT explicitly
given in Eqs. (B9) and (B12). The transformed operator
is then

�(Q′) = �T(Q′)+ �R(Q′) (20)
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with the translational term given by

�T(Q′) = DT∇T(Q′)†peq(Q′)∇T(Q′)peq(Q′)−1 (21)

while, by considering also Eq. (10), the rotational part is

�R(Q′)=MM(�DM)†DR
Mpeq(Q′)MM(�DM)peq(Q′)−1

(22)

It should be evident that the complex structures of these
evolution operators, and the coupling between rota-
tional and translational degrees of freedom, do not allow
a direct solution of the stochastic problem. A simplifica-
tion can be introduced, as described in the next section,
by assuming a strong confinement of the molecule at the
micelle interface.

3 Strong confinement at the micelle interface

The degree of radial confinement of the molecule can be
described by the reduced distribution ρeq(r) =
4π

∫
d�DM peq(Q′) normalized as

∫
dr r2 ρeq(r) = 1. Let

us assume that ρeq(r) is highly “peaked” at the distance
rm from the micelle centre (which can be identified as
the “micelle radius”). Correspondingly one can elimi-
nate the radial coordinate by projecting the probability
density onto the functional space spanned by the rema-
ing variables q = (θ , φ, �DM), with the starting variable
set specified as Q′ = (r, q). Formally, the projected non-
equilibrium probability density is given by

p(q, t) =
∫

dr r2 p(Q′, t) (23)

with the projected equilibrium distribution

peq(q) = peq(�DM)/4π ,
∫

d�DM peq(�DM) = 1 (24)

where peq(�DM) is the orientational distribution of the
molecule with respect to the DF. In particular, by using
Eq. (17) for the mean-field potential one gets

peq(�DM) ∝ e−v(1)(rm) cos βDM /kBT (25)

where it has been assumed that the coefficient v(1)(r)
depends weakly on the radial coordinate, so to be
allowed to evaluate it at the distance rm. The evolution
of p(q, t) is still described by a Fokker–Planck–Smolu-
chowski equation,

∂

∂t
p(q, t) = −�(q)p(q, t) (26)

where �(q) is the projected operator, acting on q, implic-
itly defined through the following identity to be satisfied

by a generic function f (q) [63]:

�(q)f (q)peq(q) =
∫

dr r2 �(Q′)f (q)peq(Q′) (27)

By inserting �(Q′) as given in Eq. (20), together with
Eqs. (21) and (22), and by elaborating the integral at the
right-hand side, one derives the following expression for
the projected operator

�(q) = �T(q)+ �R(�DM) (28)

where the translational term results as

�T(q) = DT∇T(q)†peq(�DM)∇T(q)peq(�DM)−1 (29)

with the gradient operator

∇T(q)  1
rm

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− sin φ

sin θ

∂

∂φ
+ cos θ cos φ

∂

∂θ
cos φ

sin θ

∂

∂φ
+ cos θ sin φ

∂

∂θ

− sin θ
∂

∂θ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+STr
RT(rm, θ , φ)MD(�DM) (30)

while for rotational term one gets

�R(�DM) = MM(�DM)†DR
Mpeq(�DM)

×MM(�DM)peq(�DM)−1 (31)

which is nothing but the usual form of a rotational diffu-
sion operator for a molecule reorienting with respect to
a (local) Director Frame.

It should be emphasized that the rotational evolution
operator Eq. (31) is independent of the polar angles
(θ , φ) for the translational coordinates. On the contrary,
a similar condition does not hold for the translational
operator Eq. (29), since the positional-gradient in Eq.
(30) includes a contribution by the rotation operator
MD(�DM) through the matrix SRT(rm, θ , φ). As long as
the matrix SRT is not vanishing, the translational dynam-
ics of the probe at the micelle interface, described by
the variables (θ , φ), and the rotational motion of the
dye with respect to the director, accounted by the Euler
angles �DM, are intrinsically coupled. Therefore, the
assumption of independent contributions by the two
types of motions, as usually invoked in the analysis of
fluorescence anisotropy of dyes in micelles [1–4], is not
legitimate. It should be mentioned that a completely
different situation arises in the analysis of small frag-
ment motions with respect to a large macromolecule,
where the independence of the overall rotational motion
and the relative motion of the fragment can be justified
on the basis of the different size of the moving bodies,
as assumed in the “model-free” approach of Lipari and
Szabo [5,6].
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In conclusion, a different route has to be followed in
order to derive, on a sound physical basis, an explicit
solution for the dye dynamics in micelles. This can be
achieved, as shown in the next section, by invoking a
separation of time-scales for the two types of motion.

4 Time-scale separation: fast reorientations and slow
lateral diffusion

Let us invoke a time-scale separation between slow
migration of the probe molecule on the spherical surface
at distance rm from the micelle centre, and much faster
reorientations of the molecule about the local direc-
tor. In other words, the molecule reorients fast about
the local “quenched” director, which in turn reorients
much slower with respect to the LF axes. Accordingly,
the decay of the correlation functions contributing to
the anisotropy ratio r(t) is expected to present a fast-
relaxing component due to the fast reorientations at
fixed location of the molecular centre, superimposed to
a slow-relaxing component corresponding to the slower
loss of orientational correlation driven by the diffusion
across the surface. The formal procedure to evaluate
the fast- and the the slow-components of the correlation
functions, at the formal level of a Born–Oppenheimer-
like approximation, is illustrated in the appendix B of
ref. [63], while in Appendix C of the present work we
only summarize the leading expressions applied hereaf-
ter.

Let us make a partition of q into the set of slow vari-
ables qs ≡ (θ , φ) and the set of fast variables qf ≡ �DM.
In the present application we are interested in evaluat-
ing the following self-correlation functions

Gm(t) = D2
m,0(�LM)∗t D2

m,0(�LM)0 (32)

where, by application of the closure relation for Wigner
functions [62] with reference to the scheme in Eq. (15),
the following substitution has to be performed

D2
m,0(�LM) =

∑

k

D2
m,k(�LD)D2

k,0(�DM) (33)

We shall now evaluate the slow- and fast- relaxing com-
ponents, Gs

m(t) and Gf
m(t), respectively, such that G(t) 

Gs
m(t) + Gf

m(t). By adopting Eq. (C2), and recalling
that peq(q) = peq(�DM)/4π , the equilibrium distribu-
tion projected onto the subspace of the slow variables is
ps

eq(θ , φ) = 1/4π for isotropic distribution of the direc-
tors. Moreover, application of Eq. (C8) yields the fol-
lowing form of projected operator referring to the slow
lateral diffusion

�s(θ , φ) = (DT/r2
m)L2 (34)

where

L2 = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2 (35)

is (proportional to) the angular momentum operator of
a point-like particle [62]. Then, by means of Eq. (C4)
applied to Eq. (33), we isolate the projection of the
observable-function onto the space of the slow variables,
to obtain

D2
m,0(�LM)s

=
∑

k

D2
m,k(�LD)

∫
d�DM peq(�DM)D2

k,0(�DM)

= D2
m,0(�LD) P2 (36)

where for the last identity we have considered that,
because of the uniaxial local alignment, averages of
Wigner functions with k �= 0 vanish; the factor
P2 =

∫
d�DM peq(�DM)D2

0,0(�DM), which corresponds
to the average of the Legendre polynomial P2(cos βDM)

over the local equilibrium distribution, is the second-
rank order parameter usually employed to quantify the
degree of alignment in uniaxial phases. Application of
Eq. (C6) yields the slow-relaxing component as

Gs
m(t) = (P2)

2
∫

dθ sin θdφ D2
m,0(�LD)∗

×e−(DT/r2
m)L2tD2

m,0(�LD)/4π (37)

By taking into account that the Wigner functions are
eigenfunctions of the angular momentum operator with
L2Dj

m,k(�LD) = j(j+ 1)Dj
m,k(�LD), then

e−(DT/r2
m)L2tDj

m,0(�LD) = e−t/τD Dj
m,0(�LD),

τ−1
D = 6DT/r2

m (38)

and Eq. (37) reduces to

Gs
m(t) = (P2)

2 1
5

e−t/τD (39)

Let us turn now to the fast-relaxing component. The
equilibrium distribution at “quenched” slow variables
(i.e., the conditional distribution on �DM at fixed �LD)
is here given by pf

eq(q) = peq(�DM). Then, the opera-
tor �f(�DM), which describes the evolution of the non-
equilibrium density for the fast variables, is obtained
from the original �(q) by extracting the terms which act
only on the fast variables; explicitly it takes the form

�f(�DM) = DT[STr
RT(rm, θ , φ)MD(�DM)]†peq(�DM)

×[STr
RT(rm, θ , φ)MD(�DM)]peq(�DM)−1

+�R(�DM) (40)
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in which a parametric dependence on the slow variables
θ , φ is conserved. Let us consider now the part of the
observable-function D2

m,0(�LM), which is complemen-
tary to its slow component D2

m,0(�LM)s, that is,

δD2
m,0(�LM)f=D2

m,0(�LM)−D2
m,0(�LM)s

=
∑

k

D2
m,k(�LD)[D2

k,0(�DM)−δk,0P2] (41)

Notice that δD2
m,0(�LM)f keeps a parametric depen-

dence on the slow variables; such a dependence leads to
a �LD-dependendent contribution to the fast-relaxing
component of the correlation function, which is explici-
tated by means of Eq. (C9) as

Gf
m(�LD, t)


∑

k,k′
D2

m,k(�LD)∗D2
m,k′(�LD)

×
∫

d�DM [D2
k,0(�DM)− δk,0P2]∗e−�f(�DM)t

×peq(�DM)[D2
k′,0(�DM)− δk′,0P2] (42)

Then, as expressed by Eq. (C10), the effective fast-relax-
ing component can be obtained as a weighted super-
position of the “static” responses Gf

m(�LD, t) over the
equilibrium distribution on the slow variables, i.e.,

Gf
m(t) 

∫
dθ sin θdφ Gf

m(�LD, t)/4π (43)

Finally, by recalling Eq. (8), one completes the deriva-
tion to achieve

r(t) = 2
5

∑

m

Gm(t), Gm(t) = Gs
m(t)+Gf

m(t) (44)

with Gs
m(t) given in Eq. (39) and Gf

m(t) in Eq. (43).
Furthermore, we are allowed to simplify the form of

Gf
m(t) by applying the condition of time-scale separa-

tion between lateral diffusion and local reorientations.
By making the reliable assumption that such a separa-
tion is mainly due to very different magnitudes of the
related diffusion coefficients, then all terms proportional
to DT/r2

m can be neglected in Eq. (40) with respect to
those involving the elements DR⊥, DR‖ of the rotational
diffusion tensor if

DT/r2
m << DR⊥, DR‖ (45)

Thus,

�f(�DM)  �R(�DM) (46)

so that the parametric dependence on θ and φ is lost, and
the fast component of the evolution operator reduces to
that which describes the local reorientational dynam-
ics. By employing Eq. (46) in Eq. (42), by recalling

the definition of the order parameter P2, and finally by
integrating as specified in Eq. (43), with some algebraic
elaborations one gets

Gf
m(t)  1

5

[
∑

k

D2
k,0(�DM)∗0D2

k,0(�DM)t − (P2)
2

]

(47)

It can be easily verified that Gf
m(0) = [1− (P2)

2]/5 and
limt→∞Gf

m(t) = 0. By including also the slow-relaxing
component given in Eq. (39), the complete fluorescence
anisotropy ratio is finally expressed as

r(t) = 2
5
(P2)

2e−t/τD

+2
5

[
∑

k

D2
k,0(�DM)∗0D2

k,0(�DM)t − (P2)
2

]

(48)

where the initial value r(0) = 2/5 and the limit limt→∞
r(t) = 0 are correctly reproduced. Now, in order to
obtain explicitly the time-depencence of r(t), only the
librational diffusion problem has to be solved. An ana-
lytical approximation can be recovered by employing
asymptotic methods with respect to the orientational
potential [61] or, like in refs. [1–4,7], by invoking a sim-
plified model like the “wobbling in a cone” to describe
the librational motion, in which case the following
explicit relation is found

r(t) = 2
5
(P2)

2e−t/τD + 2
5
(1− P2

2
)e−t/τw (49)

where τw is the time-constant for the wobbling motion.
Notice that, according to such a derivation, the fast com-
ponent does not include any contribution from the lat-
eral diffusion.

In conclusion, explicit relations for the fluorescence
depolarization are recovered under the time-scale
separation described by the condition Eq. (45). By tak-
ing into account that the translational and rotational
components of the diffusion matrix scale according to
the size a of the dye as

DT/DR⊥ ∼ DT/DR‖ ∼ a2 (50)

then the condition Eq. (45) implies that

r2
m >> a2 (51)

i.e., the size of the dye must be much smaller that the
radius of the micelle.

5 Concluding remarks

In this work we have shown that a self-consistent repre-
sentation of dye dynamics in the micellar environment
can be obtained, if roto-translational coupling and the
effects of the mean-field potential are properly taken
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into account. Such a general description, however, does
not provide directly an explicit equation for the rele-
vant observables like the time-dependent fluorescence
anisotropy, even if the approximation of strong confine-
ment at the micellar interface is invoked. The assump-
tion of independent contributions of the librational
motion with respect to the local director, and transla-
tional diffusion at the micellar interface, clearly results
to be unjustified. A more reasonable procedure relies
on the time-scale separation between the fast librational
motion and the slow translational diffusion at the micel-
lar interface. This allows the derivation of an explicit
relation, Eq. (48), for the fluorescence depolarization.
If the “wobbling in a cone” model is employed for the
librational motion, the resulting Eq. (49) is similar to
the parameterized form usually employed for the anal-
ysis of the fluorescence depolarization [1–4], with the
notable difference that the fast component is devoid of
any contribution by the slow diffusion process.

Besides the possibility of making contact with the
standard procedure of analysis of fluorescence depolar-
ization, our method allows the treatment of the dynam-
ical problem in more general conditions, for instance in
the absence of strong confinement, or when the time-
scale separation is missing when dealing with a large-
size dye. In these cases, the full solution of the model
is required by employing suitable computational proce-
dures which have been developed in the past for analo-
gous complex stochastic problems.
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Appendix A: About the rotation operators

Consider a function f (�LM) evaluated at the molec-
ular orientation specified by the set of Euler angles
�LM = (αLM, βLM, γLM) which encodes the transfor-
mation from the Laboratory Frame (LF) to the Molec-
ular Frame (MF) [62]. Under the infinitesimal change
of molecular orientation d�LM = (dαLM, dβLM, dγLM),
the function changes as

df (�LM) = f (�LM + d�LM)− f (�LM)

= d�Tr
LM

∂

∂�LM
f (�LM)

≡ dαLM
∂

∂αLM
f (�LM)+ dβLM

∂

∂βLM
f (�LM)

+dγLM
∂

∂γLM
f (�LM) (A1)

Let us introduce the infinitesimal Cartesian vector
dϕLM(�LM) describing the infinitesimal rotation due to

the d�LM of MF with respect to LF, and whose compo-
nents are expressed in the LF. Explicitly one has that

R(�LM)dϕL(�LM) = d�LM (A2)

for the matrix R(�LM) given by

R(�LM) =
⎛

⎝
− cos γLM/ sin βLM sin γLM/ sin βLM 0

sin γLM cos γLM 0
cos βLM cos γLM/ sin βLM − cos βLM sin γLM/ sin βLM 1

⎞

⎠

(A3)

By substituting Eq. (A2) into Eq. (A1) we obtain

df (�LM) = dϕL(�LM)TrR(�LM)Tr ∂

∂�LM
f (�LM)

= dϕL(�LM)TrML(�LM)f (�LM) (A4)

where we have introduced

ML(�LM) ≡ R(�LM)Tr ∂

∂�LM
(A5)

which is the rotation operator (with respect to the molec-
ular state �LM) whose Cartesian components are
expressed in the LF.

Now consider the following change of representation
of the infinitesimal rotation vector under change of the
reference frame from LF to MF:

dϕM(�LM) ≡ E(MF← LF)dϕL(�LM) (A6)

where E(MF← LF) is the Euler matrix employed in the
transformation of vector’s Cartesian components under
this specific change of reference frame [62]. The use of
Eq. (A6) in Eq. (A2) leads to

d�LM = R(�LM)E(LF←MF)dϕM(�LM)

= R′(�LM)dϕM(�LM) (A7)

where we have introduced the matrix

R′(�LM) ≡ R(�LM)E(LF←MF) (A8)

Moreover, by means of Eq. (A6), Eq. (A4) changes to

df (�LM) = dϕM(�LM)TrR′(�LM)Tr ∂

∂�LM
f (�LM)

= dϕM(�LM)TrMM(�LM)f (�LM) (A9)

where

MM(�LM) ≡ R′(�LM)Tr ∂

∂�LM
(A10)

is the rotation operator (with respect to the Euler Angles
�LM) with Cartesian components now expressed in the
MF. The relation between ML(�LM) in Eq. (A5) and
MM(�LM) in Eq. (A10) is the simple transformation
of vector’s coordinates under rotation of the reference
frame, i.e.,

MM(�LM) = E(MF← LF)ML(�LM) (A11)
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Appendix B: Change of representation Q → Q′
in the gradient operators

With reference to the notation introduced in Sect. 2,
let us consider a function f (Q) of the coordinates Q =
(r, �LM). Under the infinitesimal change of variables
dQ, the function changes according to

df (Q) = f (Q+ dQ)− f (Q)

= drTr∇T(r)f (Q)+ dϕL(�LM)TrML(�LM)f (Q)

(B1)

with dr = (drx, dry, drz), and where dϕL(�LM) is the
infinitesimal rotation vector due to d�LM, with Carte-
sian components expressed in the LF (see Eq. (A4) of
Appendix A); thus, the orientational-gradient operator
is ∇R(Q) ≡ ML(�LM). Consider now the change of
representation Q → Q′ = (r, θ , φ, �DM), where �DM
denotes the molecular orientation with respect to the
Director Frame (DF). Of course one has that f (Q′) =
f (Q) |Q=Q(Q′). Our purpose is to explicitate the posi-
tional- and orientational-gradient operators acting on
the new coordinates, ∇T(Q′) and ∇R(Q′), respectively.
We start by considering that the infinitesimal change of
the function due to the change dQ′ is given by

df (Q′) = f (Q′ + dQ′)− f (Q′)

= dr
∂

∂r
f (Q′)+ dφ

∂

∂φ
f (Q′)+ dθ

∂

∂θ
f (Q′)

+dϕD(�DM)TrMD(�DM)f (Q′) (B2)

where dϕD(�DM) is the infinitesimal rotation vector due
to d�DM with Cartesian components in the DF. First one
has the following relations,

dr = sin θ cos φ drx + sin θ sin φ dry + cos θ drz

dφ = − sin φ

r sin θ
drx + cos φ

r sin θ
dry (B3)

dθ = cos θ cos φ

r
drx + cos θ sin φ

r
dry − sin θ

r
drz

Then, the infinitesimal rotation of MF with respect to LF
given by dϕL(�LM) can be replaced by the infinitesimal
rotation of DF specified by vector dϕL(�LD), followed
by the rotation of MF with respect to DF specified by the
vector dϕL(�DM). By exploiting the additive property

of infinitesimal rotation vectors, one obtains

dϕL(�LM)=dϕL(�LD)+E(LF←DF)dϕD(�DM) (B4)

On the basis of the LF unit vectors, dϕL(�LD) is given by

dϕL(�LD) = dφzL + dθu, u = cos φyL − sin φxL (B5)

that is, the whole infinitesimal rotation of DF with
respect to LF is decomposed as an anti-clockwise rota-
tion of dφ about zL, followed by an anti-clockwise rota-
tion of dθ about the vector u which is coincident with the
azimuthal unit vector of the Spherical orthogonal set of
axes at the location r, φ, θ . From Eqs. (B4) and (B5) one
gets

dϕD(�DM) = E(DF← LF)[dϕL(�LM)− dθ cos φyL

+dθ sin φxL − dφzL] (B6)

Now, from Eqs. (B4) and (B6) one can establish the fol-
lowing connection between infinitesimal changes of the
“new” variables and those of the “old” ones,

⎛

⎝
dr
dφ

dθ

⎞

⎠ = STTdr+ STRdϕL(�DM) (B7)

dϕD(�DM) = SRTdr+ SRRdϕL(�DM) (B8)

with the the matrices

STr
TT =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

sin θ cos φ − sin φ

r sin θ

cos θ cos φ

r

sin θ sin φ
cos φ

r sin θ

cos θ sin φ

r

cos θ 0 − sin θ

r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(B9)

STR = 0 (B10)

SRR = E(DF← LF) (B11)

STr
RT =

⎛

⎜
⎜
⎝

A1
cos θ cos φ

r + B1
sin φ
r sin θ

A2
cos θ cos φ

r + B2
sin φ
r sin θ

A3
cos θ cos φ

r + B3
sin φ
r sin θ

A1
cos θ sin φ

r − B1
cos φ
r sin θ

A2
cos θ sin φ

r − B2
cos φ
r sin θ

A3
cos θ sin φ

r − B3
cos φ
r sin θ

−A1
sin θ

r −A2
sin θ

r −A3
sin θ

r

⎞

⎟
⎟
⎠ (B12)

where

Aj = [E(DF← LF)xL]j sin φ−[E(DF← LF)yL]j cos φ

Bj = [E(DF← LF)zL]j (B13)

with the index j = 1, 2, 3 labelling the axes of DF.
The final step consists in inserting Eqs. (B7) and (B8)

into Eq. (B2), so that the infinitesimal change of the
function, df (Q′), is written in terms of the same infin-
itesimal changes of the “old” variables entering the
expression for df (Q) in Eq. (B1). Then, since the change
of molecular state is the same, the expressions for the
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differences df (Q) and df (Q′) are compared yielding the
following form of the transformed gradient operators
acting on the new variables Q′:

∇T(Q′) = STr
TT

⎛

⎝
∂/∂r
∂/∂φ

∂/∂θ

⎞

⎠+ STr
RTMD(�DM) (B14)

∇R(Q′) = STr
TR

∂

∂r
+ STr

RRMD(�DM)

= E(LF← DF)MD(�DM) (B15)

Appendix C: Correlation functions under time-scale
separation

In this appendix we summarize the main steps in the
evaluation of time-correlation functions under the
assumption of time-scale separation between different
dynamic processes driving the relaxation. Here we col-
lect the leading expressions which are applied in Sect. 4,
while for the rigorous derivation and comments about
the procedure we address the reader to the appendix B
of ref. [63].

Let us divide the ensemble of stochatic variables q,
which are relevant in the description of a generic sto-
chastic process, into a set of slow variables qs and a
set of fast variables qf. Accordingly, the decay of the
correlation function G(t) = f (q)∗t g(q)0 between a pair
of generic observables depending on q, shows a fast
relaxing component Gf(t) and a low relaxing compo-
nent Gs(t), with

G(t) = Gs(t)+Gf(t) (C1)

The aim is to provide approximations to Gs(t) and
Gf(t) starting from the knowledge of the evolution oper-
ator �(q) and of the equilibrium distribution peq(q). The
leading idea is that a Born-Oppenheimer-like approxi-
mation can be exploited, on assuming that a fast loss of
correlation is due to fluctuations of qf at “quenched” qs,
followed by a much slower decay due to the stochastic
modulation of qs.

Let us start by projecting the equilibrium distribution
onto the subspace εs of the slow variables (notice the
superscript “s”),

ps
eq(qs) =

∫
dqf peq(q) (C2)

Then, the equilibrium distribution on the fast variables
(superscript “f”) is defined as the conditional distribu-
tion at fixed qs,

pf
eq(q) ≡ peq(qs | qf) (C3)

Notice that pf
eq(q) may keep a parametric dependence

on qs. Now consider the projection of the observables

f (q) and g(q) onto the subspace εs,

f s(qs)ps
eq(qs) =

∫
dqf f (q)peq(q) (C4)

and the correspondent orthogonal complement

δf f(q) = f (q)− f s(qs) (C5)

[analogous relations hold for g(q)]. The slow relaxing
component of the correlation function is obtained in the
form

Gs(t) =
∫

dqs f s(qs)∗e−�s(qs)tps
eq(qs)gs(qs) (C6)

where �s(qs) is the projected evolution operator which
defines the evolution of the projected non-equilibrium
probability density ps(qs, t) = ∫

dqf p(q, t) through the
Fokker–Planck equation

∂

∂t
ps(qs, t) = −�s(qs)ps(qs, t) (C7)

The operator �s(qs) is implicitly defined by means of
the following identity to be satisfied for generic func-
tions F(qs) of the slow variables,

�s(qs)F(qs)ps
eq(qs) =

∫
dqf �(q)F(qs)peq(q) (C8)

Then, an approximation of the fast relaxing component
of the correlation function (at quenched qs) is found as

Gf(qs, t) 
∫

dqf δf f(q)∗e−�f(q)tpf
eq(q)δgf(q) (C9)

where the operator �f(q) is obtained from the global
�(q) by extracting the terms acting only on the fast vari-
ables qf (notice that a parametric dependence on qs may
be kept). Finally, the fast relaxing component Gf(t) can
be obtained by averaging Eq. (C9) over the distribution
on qs:

Gf(t) 
∫

dqs ps
eq(qs)Gf(qs, t) (C10)
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